Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 217(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32097463

RESUMO

Ion channels represent a large class of drug targets, but their role in brain cancer is underexplored. Here, we identify that chloride intracellular channel 1 (CLIC1) is overexpressed in human central nervous system malignancies, including medulloblastoma, a common pediatric brain cancer. While global knockout does not overtly affect mouse development, genetic deletion of CLIC1 suppresses medulloblastoma growth in xenograft and genetically engineered mouse models. Mechanistically, CLIC1 enriches to the plasma membrane during mitosis and cooperates with potassium channel EAG2 at lipid rafts to regulate cell volume homeostasis. CLIC1 deficiency is associated with elevation of cell/nuclear volume ratio, uncoupling between RNA biosynthesis and cell size increase, and activation of the p38 MAPK pathway that suppresses proliferation. Concurrent knockdown of CLIC1/EAG2 and their evolutionarily conserved channels synergistically suppressed the growth of human medulloblastoma cells and Drosophila melanogaster brain tumors, respectively. These findings establish CLIC1 as a molecular dependency in rapidly dividing medulloblastoma cells, provide insights into the mechanism by which CLIC1 regulates tumorigenesis, and reveal that targeting CLIC1 and its functionally cooperative potassium channel is a disease-intervention strategy.


Assuntos
Canais de Cloreto/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Animais , Peso Corporal , Linhagem Celular Tumoral , Proliferação de Células , Tamanho Celular , Canais de Cloreto/deficiência , Canais de Cloreto/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Técnicas de Silenciamento de Genes , Homeostase , Camundongos , Mitose , Mutação/genética , Canais de Potássio Ativados por Sódio/metabolismo , Ligação Proteica , RNA/biossíntese , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Nature ; 574(7780): 707-711, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31664194

RESUMO

In cancer, recurrent somatic single-nucleotide variants-which are rare in most paediatric cancers-are confined largely to protein-coding genes1-3. Here we report highly recurrent hotspot mutations (r.3A>G) of U1 spliceosomal small nuclear RNAs (snRNAs) in about 50% of Sonic hedgehog (SHH) medulloblastomas. These mutations were not present across other subgroups of medulloblastoma, and we identified these hotspot mutations in U1 snRNA in only <0.1% of 2,442 cancers, across 36 other tumour types. The mutations occur in 97% of adults (subtype SHHδ) and 25% of adolescents (subtype SHHα) with SHH medulloblastoma, but are largely absent from SHH medulloblastoma in infants. The U1 snRNA mutations occur in the 5' splice-site binding region, and snRNA-mutant tumours have significantly disrupted RNA splicing and an excess of 5' cryptic splicing events. Alternative splicing mediated by mutant U1 snRNA inactivates tumour-suppressor genes (PTCH1) and activates oncogenes (GLI2 and CCND2), and represents a target for therapy. These U1 snRNA mutations provide an example of highly recurrent and tissue-specific mutations of a non-protein-coding gene in cancer.


Assuntos
Neoplasias Cerebelares/genética , Proteínas Hedgehog/genética , Meduloblastoma/genética , RNA Nuclear Pequeno/genética , Adolescente , Adulto , Processamento Alternativo , Proteínas Hedgehog/metabolismo , Humanos , Mutação , Sítios de Splice de RNA , Splicing de RNA
3.
Mol Biol Cell ; 29(4): 419-434, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29282284

RESUMO

An intact actomyosin network is essential for anchoring polarity proteins to the cell cortex and maintaining cell size asymmetry during asymmetric cell division of Drosophila neuroblasts (NBs). However, the mechanisms that control changes in actomyosin dynamics during asymmetric cell division remain unclear. We find that the actin-binding protein, Moesin, is essential for NB proliferation and mitotic progression in the developing brain. During metaphase, phosphorylated Moesin (p-Moesin) is enriched at the apical cortex, and loss of Moesin leads to defects in apical polarity maintenance and cortical stability. This asymmetric distribution of p-Moesin is determined by components of the apical polarity complex and Slik kinase. During later stages of mitosis, p-Moesin localization shifts more basally, contributing to asymmetric cortical extension and myosin basal furrow positioning. Our findings reveal Moesin as a novel apical polarity protein that drives cortical remodeling of dividing NBs, which is essential for polarity maintenance and initial establishment of cell size asymmetry.


Assuntos
Divisão Celular Assimétrica/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Citoesqueleto de Actina/enzimologia , Actomiosina/metabolismo , Animais , Membrana Celular/enzimologia , Membrana Celular/ultraestrutura , Polaridade Celular , Drosophila/enzimologia , Proteínas de Drosophila/genética , Metáfase , Fosforilação , Proteínas Serina-Treonina Quinases/genética
4.
Dev Dyn ; 243(12): 1554-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25204795

RESUMO

BACKGROUND: The tumor suppressor protein merlin is thought to regulate cell proliferation and cell adhesion through interaction with protein partners. Loss of merlin is associated with Neurofibromatosis Type 2 (NF2) tumors. NHERF1 or EBP50 is a scaffolding protein that functions in apical organization of polarized cells. Merlin and NHERF1 have been shown to interact in vitro in vertebrates. We investigate how the Drosophila NHERF1 orthologue, Sip1, and Merlin function to regulate cell proliferation and adhesion. RESULTS: We identify two conserved arginine residues (R325 and R335) in Merlin which, in addition to the FERM domain, are required for interaction with Sip1. Mutation of the arginine residues result in reduced Sip1 binding to Merlin and loss of Merlin growth suppressor function. Over-expression of Merlin(R325A) and/or Merlin(R335L) in Drosophila wings result in increased proliferation in the adult wing (increase in size), which is rescued by co-over-expression of constitutively active Merlin protein. Reduced Sip1 binding to Merlin also produces defects in adhesion in follicle epithelial cells. CONCLUSIONS: Sip1 facilitates the activation of Merlin as a tumor suppressor protein. Thus, our work provides insight into how Merlin functions as a tumor suppressor and in adhesion and this provides insight into the mechanism of NF2 pathogenesis.


Assuntos
Proliferação de Células/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurofibromina 2/metabolismo , Animais , Adesão Celular/fisiologia , Drosophila melanogaster , Mutação , Proteínas do Tecido Nervoso/genética , Neurofibromina 2/genética , Ligação Proteica , Estrutura Terciária de Proteína
5.
Clin Cancer Res ; 20(12): 3159-73, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24721646

RESUMO

PURPOSE: Triple-negative breast cancers (TNBC) are defined by a lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (ERBB2/HER2). Although initially responsive to chemotherapy, most recurrent TNBCs develop resistance, resulting in disease progression. Autophagy is a lysosome-mediated degradation and recycling process that can function as an adaptive survival response during chemotherapy and contribute to chemoresistance. Our goal was to determine whether autophagy inhibition improves treatment efficacy in TNBC cells in tumors either sensitive or refractory to anthracyclines. EXPERIMENTAL DESIGN: We used in vitro and in vivo models of TNBC using cell lines sensitive to epirubicin and other anthracyclines, as well as derivative lines, resistant to the same drugs. We assessed basal autophagy levels and the effects of chemotherapy on autophagy in parental and resistant cells. Applying various approaches to inhibit autophagy alone and in combination with chemotherapy, we assessed the effects on cell viability in vitro and tumor growth rates in vivo. RESULTS: We demonstrated that epirubicin induced autophagic flux in TNBC cells. Epirubicin-resistant lines exhibited at least 1.5-fold increased basal autophagy levels and, when treated with autophagy inhibitors, showed a significant loss in viability, indicating dependence of resistant cells on autophagy for survival. Combination of epirubicin with the autophagy inhibitor hydroxychloroquine resulted in a significant reduction in tumor growth compared with monotherapy with epirubicin. CONCLUSION: Autophagy inhibition enhances therapeutic response in both anthracycline-sensitive and -resistant TNBC and may be an effective new treatment strategy for this disease.


Assuntos
Antraciclinas/farmacologia , Antibióticos Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Epirubicina/farmacologia , Neoplasias de Mama Triplo Negativas/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...